Structure Model Index Does Not Measure Rods and Plates in Trabecular Bone
نویسندگان
چکیده
Structure model index (SMI) is widely used to measure rods and plates in trabecular bone. It exploits the change in surface curvature that occurs as a structure varies from spherical (SMI = 4), to cylindrical (SMI = 3) to planar (SMI = 0). The most important assumption underlying SMI is that the entire bone surface is convex and that the curvature differential is positive at all points on the surface. The intricate connections within the trabecular continuum suggest that a high proportion of the surface could be concave, violating the assumption of convexity and producing regions of negative differential. We implemented SMI in the BoneJ plugin and included the ability to measure the amounts of surface that increased or decreased in area after surface mesh dilation, and the ability to visualize concave and convex regions. We measured SMI and its positive (SMI(+)) and negative (SMI(-)) components, bone volume fraction (BV/TV), the fraction of the surface that is concave (CF), and mean ellipsoid factor (EF) in trabecular bone using 38 X-ray microtomography (XMT) images from a rat ovariectomy model of sex steroid rescue of bone loss, and 169 XMT images from a broad selection of 87 species' femora (mammals, birds, and a crocodile). We simulated bone resorption by eroding an image of elephant trabecule and recording SMI and BV/TV at each erosion step. Up to 70%, and rarely <20%, of the trabecular surface is concave (CF 0.155-0.700). SMI is unavoidably influenced by aberrations induced by SMI(-), which is strongly correlated with BV/TV and CF. The plate-to-rod transition in bone loss is an erroneous observation resulting from the close and artifactual relationship between SMI and BV/TV. SMI cannot discern between the distinctive trabecular geometries typical of mammalian and avian bone, whereas EF clearly detects birds' more plate-like trabecule. EF is free from confounding relationships with BV/TV and CF. SMI results reported in the literature should be treated with suspicion. We propose that EF should be used instead of SMI for measurements of rods and plates in trabecular bone.
منابع مشابه
Erratum: Structure Model Index Does Not Measure Rods and Plates in Trabecular Bone
[This corrects the article on p. 162 in vol. 6, PMID: 26528241.].
متن کاملMicromechanical analyses of vertebral trabecular bone based on individual trabeculae segmentation of plates and rods.
Trabecular plates play an important role in determining elastic moduli of trabecular bone. However, the relative contribution of trabecular plates and rods to strength behavior is still not clear. In this study, individual trabeculae segmentation (ITS) and nonlinear finite element (FE) analyses were used to evaluate the roles of trabecular types and orientations in the failure initiation and pr...
متن کاملComplete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone.
UNLABELLED Trabecular plates and rods are important microarchitectural features in determining mechanical properties of trabecular bone. A complete volumetric decomposition of individual trabecular plates and rods was used to assess the orientation and morphology of 71 human trabecular bone samples. The ITS-based morphological analyses better characterize microarchitecture and help predict anis...
متن کاملDeterioration of trabecular architecture in hypogonadal men.
Bone strength depends on trabecular architecture, characterized by interconnected plates and rods. In osteoporosis, the plates become fenestrated, resulting in more rods that deteriorate and become disconnected. In men, hypogonadism is a common cause of osteoporosis. To determine whether male hypogonadism affects trabecular architecture, we selected 10 men with severe, untreated hypogonadism, a...
متن کاملArchitecture and mineralization of developing trabecular bone in the pig mandibular condyle.
Architecture and mineralization are important determinants of trabecular bone quality. To date, no quantitative information is available on changes in trabecular bone architecture and mineralization of newly formed bone during development. Three-dimensional architecture and mineralization of the trabecular bone in the mandibular condyle from six pigs of different developmental ages were investi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015